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ANALYSIS OF THE VLASOV-POISSON EQUATION
BY USING A VISCOSITY TERM

Boo-Yong Choi*, Sun-Bu Kang**, and Moon-Shik Lee***

Abstract. The well-known Vlasov-Poisson equation describes plasma
physics as nonlinear first-order partial differential equations. Be-
cause of the nonlinear condition from the self consistency of the
Vlasov-Poisson equation, many problems occur: the existence, the
numerical solution, the convergence of the numerical solution, and
so on. To solve the problems, a viscosity term (a second-order par-
tial differential equation) is added. In a viscosity term, the Vlasov-
Poisson equation changes into a parabolic equation like the Fokker-
Planck equation. Therefore, the Schauder fixed point theorem and
the classical results on parabolic equations can be used for analyz-
ing the Vlasov-Poisson equation. The sequence and the convergence
results are obtained from linearizing the Vlasove-Poisson equation
by using a fixed point theorem and Gronwall’s inequality. In nu-
merical experiments, an implicit first-order scheme is used. The
numerical results are tested using the changed viscosity terms.

1. Introduction and preparation

Plasma physics is a fascinating scientific domain where an applied
mathematician and more specifically, a numerical analyst can find a
variety of beautiful and difficult nonlinear problems of great practical
interest. More details can be found elsewhere in [1, 3, 5, 6, 7, 9, 11,
12, 13, 14, 16, 17, 18, 19, 23, 20, 21, 22]. However, because plasmas
are hot, ionized gases that are composed of ions, electrons, and neutral
atoms, it is difficult to experiment on neutral atoms for realtime and
to understand the behavior of particles(ionized gases composed of ions,
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electrons, and neutral atoms). A very efficient tool for experiments is
the computer simulation of the mathematical model of a plasma using
a numerical method. The equation that describes the idealized plasma
in a mathematical model is the Vlasov equation, which describes the
electron distribution u,

∂u

∂t
+ v · ∇xu + F · ∇yu = 0, x, y ∈ R3, t > 0,(1.1)

as coupled to the Poisson equation

∆xΦ = ρ =
∫

Ωy

udy − 1,(1.2)

∇xΦ = F(1.3)

where ρ is the charge density. In an electrostatic case,∇x = (∂/∂x1, ∂/∂x2,
∂/∂x3), ∇y = (∂/∂y1, ∂/∂y2, ∂/∂y3), v = (v1, v2, v3), F = (F1, F2, F3)
and Ω = Ωx × Ωy. To simplify and generalize the presentation of the
method, the Vlasov equation is presented as follows:

ut + ζ(u) · ∇u = 0.(1.4)

In this paper, let us assume that

ζ(u) = (v, F ) = (v1, v2, v3, F1, F2, F3) ,

and the particles are in a tokamak, where ∂vi/∂xj = 0 and ∂Fi/∂yj = 0
for i = 1, 2, 3 and j = 1, 2, 3. More details can be found elsewhere in
[5, 6].

The tokamak is characterized by azimuthal (rotational) symmetry,
and the use of the plasma-borne electric current to generate the helical
component of the magnetic field necessary for stable equilibrium. This
can be contrasted to another toroidal magnetic confinement device, the
stellarator, which has a discrete (e.g. fivefold) rotational symmetry, and
in which all of the confining magnetic fields are produced by external
coils with a negligible electric current flowing through the plasma. Hence
the domain Ω is S1 ×D5 in R6, which is obtained by thickening the S1

that is embedded in R6. Its boundary is equal to S1×S4. From (1.4) and
ζ(u), the solution space has a compact support, where Ωx = S1 × D2,
Ωy = D3.

In the above equations, u is the electron distribution function and F
is the electrostatic field. The charge density is known as ρ. Assuming a
periodic plasma of period L, the functions u and F satisfy the periodic



Analysis of the Vlasov-Poisson equation by using a viscosity term 503

boundary conditions:

u(t, 0, x2, x3, y) = u(t, L, x2, x3, y)
F (t, 0, x2, x3, y) = F (t, L, x2, x3, y),

where (x2, x3, y) ∈ D5 for all t ≥ 0. The periodic boundary condition is
equivalent to ∫

Ωx

∫

Ωy

udydx = |Ωx|

⇔
∫

∂Ωx

F · n = 0,

where n is a normal vector. To completely define the problem, a zero-
mean electrostatic field condition is added as follows∫

Ωx

F = ~0,

where ~0 = (0, 0, 0) with an initial condition of u(0, x, y) = u0(x, y). More
details can be found elsewhere in [9]. From the above conditions, and
with Φ being defined up to an additive constant, the following equation
is obtained

∆xΦ = ρ =
∫

Ωy

udy − 1,

Φ|∂Ωx = 0.

By Poisson equation and Friedrichs’ inequality,

‖∆xΦ‖L2(Ωx) = ‖ρ‖L2(Ωx) ≤ C0‖u‖L2(Ω)

‖∇Φ‖L2(Ωx) ≤ C1‖u‖L2(Ω),

where C0, C1 are constants depending on Ω. More details can be found
elsewhere in [4, 10].

To show the existence of the solution of the Vlasov-Poisson sys-
tem the second-order parabolic equation is used where ‖ζ(u)‖L∞(Ω) is
bounded. The Sobolev imbedding theorem is that if mp > n, then
Wm,p(Ω) ⊂ L∞(Ω), where n is the dimension of Ω and W is the Sobolev
space. Since the dimension of Ωx is 3 and p is 2, it is enough to make
m = 2. Then, H2(Ωx) ⊂ L∞(Ωx). Therefore, if u ∈ H1(Ω), then
ρ ∈ H1(Ωx). So, Φ ∈ H3(Ωx) by Poisson’s equation and Fi ∈ H2(Ωx)
for i = 1, 2, 3. Fi ∈ L∞(Ωx) for i = 1, 2, 3 are obtained. More details
can be found elsewhere in [2].



504 Boo-Yong Choi, Sun-Bu Kang, and Moon-Shik Lee

In the following, let Ω denote an open subset of R6, with boundary
∂Ω and Hk(Ω) as the Hilbert space for the norm

‖u‖Hk(Ω) =


 ∑

|s|≤k

∫

Ω
|Dsu(x)|2


 .

The space Lp(0, T ; Hk(Ω)) consists of all functions u, such that for al-
most every t in (0, T ), u(t) belongs to Hk(Ω). Lp(0, T ;Hk(Ω)) is a
normed space for the norm

‖u‖Lp(0,T ;Hk(Ω)) =
(∫ T

0
‖u(t)‖p

Hk(Ω)

)1/p

,

where p > 1 and k is a positive integer. L∞(0, T ;L2(Ω)) is a normed
space for the norm

‖u‖L∞(0,T ;L2(Ω)) = ess sup
0≤t≤T

‖u(t)‖L2(Ω).

Some other spaces that appear below can be defined analogously. More
details can be found elsewhere in [8, 10, 27].

The space W (0, T ) is introduced as follows:

W (0, T ) =
{

w ∈ L2
(
0, T ; H1

0 (Ω)
)
,

dw

dt
∈ L2

(
0, T ;H1(Ω)′

)}
,

where H1(Ω)′ is the dual space of H1
0 (Ω). W (0, T ) is a Hilbert space

with the graph norm.
If w ∈ W (0, T ), then

ρw =
∫

Ωy

wdy − 1 ∈ H1(Ωx).

By using the classical results of Poisson’s equation and integration, the
following equations are obtained

ζ(w) ∈
6∏

L∞(Ω) = L∞(Ω)× . . .× L∞(Ω)︸ ︷︷ ︸
6

and

‖ζ(w)‖L∞(Ω) ≤ M = max
{

max
Ωy

‖v‖∞, C0‖w‖L2(Ω)

}
,

where C0 is a constant depending on Ω.
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For all u,w ∈ W (0, T ), Φu and Φw can be obtained by Poisson’s
equation as follows: ∆xΦu = ρu and ∆xΦw = ρw.

‖∆xΦu −∆xΦw‖L2(Ωx) = ‖ρu − ρw‖L2(Ωx)

‖∇xΦu −∇xΦw‖L2(Ωx) ≤ K‖ρu − ρw‖L2(Ωx)

are obtained by Friedrichs’ inequality, where K is a constant. More
details can be found elsewhere in [4, 10]. By using the Corollary of the
Sobolev imbedding theorem, the following equation is obtained

‖∇xΦu −∇xΦw‖L∞(Ωx) ≤ K1‖∇xΦu −∇xΦw‖L2(Ωx)

≤ K2‖ρu − ρw‖L2(Ωx) ≤ K3‖u− w‖L2(Ω),

where K1, K2 and K3 are the constants.
Therefore, since v = y, ‖ζ(u)− ζ(w)‖L∞(Ω) ≤ C1‖u− w‖L2(Ω) for all

u,w in W (0, T ) is obtained, where C1 is a constant.
However, it is difficult to show the existence of the solution of (1.4),

which is a nonlinear first-order partial differential equation. One of
the methods for solving the problem is to add a second-order partial
differential equation because the results (e.g. existence, uniqueness and
regularity) of second-order partial differential equations are well known.
Therefore, the (1.4) changes into

ut + ζ(u) · ∇u−∇ · (ε∇u) = 0.

More details can be found elsewhere in [10, 27].
The paper is organized as follows: In Section 2, the existence and

uniqueness of the proposed model Eq. (1.4) are shown. In Section 3, an
iteration scheme, which converges to the solution of (1.4), is described.
In section 4, numerical experiments are shown.

2. Existence and uniqueness results

The standard notations will be used throughout this paper. More
details can be found elsewhere in [8, 10, 27].

Theorem 2.1. Let u0 ∈ H1
0 (Ω). Then, there is the unique weak so-

lution u, such that u ∈ C([0, T ];L2(Ω))∩L2(0, T ; H1
0 (Ω)), with du/dt ∈

L2(0, T ;H1(Ω)′), which satisfies

ut + ζ(u) · ∇u−∇ · (ε∇u) = 0,(2.1)
u|∂Ω = 0,

u(0) = u0.
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Proof. The proof consists of three parts:

1) the existence of a weak solution,
2) the regularity of the solution,
3) the uniqueness of the solution,

1) The existence of a weak solution. Unfortunately, the existence of the
solution (1.4) does not always occur. To overcome this problem, the
second-order parabolic equation theorem can be used by adding a second-
order term, −∇ · (ε∇u) to (1.4), as follows:

ut + ζ(u) · ∇u−∇ · (ε∇u) = 0.(2.2)

Since ‖ζ(w)‖∞ < M , let w ∈ W (0, T ) ∩ L∞(0, T ; L2(Ω)), such that

‖w‖L∞(0,T ;L2(Ω)) ≤ ‖u0‖L2(Ω).

From the linearization of (2.2) and the weak formulation, the follow-
ing linear problem [Ew] is obtained: Find u ∈ W (0, T ), such that

(2.3)
(ut, v) + (ζ(w) · ∇u, v) + ε(∇u,∇v) = 0, ∀v ∈ H1

0 (Ω) a.e. in [0, T ]
u(0) = u0.

Since ζ(w) ∈ ∏6 L∞(Ω), there is a unique solution U(w) of (2.3), which
depends on w and ε. This follows from the classical results of the para-
bolic equation [8, 10, 27]. In fact, U(w) is in the nonempty, convex, and
weakly compact subset W0 of W (0, T ) which is defined by

W0 =
{
w ∈ W (0, T ) : ‖w‖L∞(0,T ;L2(Ω)) ≤ ‖u0‖L2(Ω), w(0) = u0,

‖w‖L2(0,T ;H1(Ω)) + ‖wt‖L2(0,T ;H1(Ω)′) ≤ C‖u0‖L2(Ω)

}
,

where C is a constant which only depends on Ω, T , ζ(w) and ε. Thus,
U is mapped from W0 into W0.
Since W (0, T ) is compactly imbedded into L2(0, T ; L2(Ω)), W0 is a
closed, convex, bounded subset of L2(0, T ; L2(Ω)). In order to apply
the Schauder fixed point theorem, it must be shown that U(w) is a com-
pact continuous mapping from W0 into W0. Let {wk} be a sequence in
W0 which converges weakly to some w in W0 and uk = U(wk). The
sequence {wk} contains a subsequence such that uk → u weakly in
L2(0, T ;H2(Ω)), duk/dt → du/dt weakly in L2(0, T ;H2(Ω)). More de-
tails can be found elsewhere in [8, 15, 27]. By passing to the limit in the
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relation
(

dU(wk)
dt

(t), v
)

+ (ζ(wk) · ∇U(wk), v) + ε(∇U(wk),∇v) = 0,

U(wk)(0) = u0,

U(wk) → U(w) and u = U(w) are obtained. Due to the uniqueness of
the solution of [Ew], the whole sequence uk = U(wk) converges weakly
in W (0, T ) to u = U(w). Hence, the mapping of U is weakly continuous
from W0 into W0. This, in turn, shows that the mapping of U is compact.
A similar argument shows that U is continuously mapped. More details
can be found elsewhere in [8, 15, 27]. By applying the Schauder fixed
point theorem, u exists such that u = U(u), which consequently solves
(2.3).

2) The regularity of the solution. Using the general theory of parabolic
equations and the bootstrap argument, u is a strong solution of (2.3) and
u ∈ C∞((0, T )×Ω). More details can be found elsewhere in [8, 10, 27].

3) The uniqueness of the solution. Let u and w be the two solutions for
(2.2). For almost every t in [0, T ],

ut + ζ(u) · ∇u−∇ · (ε∇u) = 0,
wt + ζ(w) · ∇w −∇ · (ε∇w) = 0,

and u(0) = w(0) = u0.

By subtracting, multiplying and integrating the parts,

((u− w)t, v) + (ζ(u) · ∇u− ζ(w) · ∇w, v) + ε(∇u−∇w,∇v) = 0

((u− w)t, v) + ε(∇u−∇w,∇v)

= − ((ζ(u)− ζ(w))∇u, v)− (ζ(w)(∇u−∇w), v) .

By taking v = u− w,

1
2

d

dt
‖u− w‖2

L2(Ω) + ε‖∇u−∇w‖2
L2(Ω)

≤ ‖ζ(u)− ζ(w)‖L∞(Ω) ‖∇u‖L2(Ω)‖u− w‖L2(Ω)(2.4)

+‖ζ(w)‖L∞(Ω)‖∇u−∇w‖L2(Ω)‖u− w‖L2(Ω).

Moreover ‖ζ(u)− ζ(w)‖L∞(Ω) ≤ C1‖u−w‖L2(Ω) and ‖ζ(w)‖L∞(Ω) ≤ M .
By combining these inequalities and using Schwarz’s inequality, (2.4)
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changes into

1
2

d

dt
‖u− w‖2

L2(Ω) + ε‖∇u−∇w‖2
L2(Ω)

≤ C1‖∇u‖L2(Ω)‖u− w‖2
L2(Ω)

+ε1M‖∇u−∇w‖2
L2(Ω) +

4M

ε1
‖u− w‖2

L2(Ω).

1
2

d

dt
‖u− w‖2

L2(Ω) + (ε− ε1M)‖∇u−∇w‖2
L2(Ω)(2.5)

≤
(

C1‖∇u‖L2(Ω) +
4M

ε1

)
‖u− w‖2

L2(Ω).

Assuming 0 ≤ ε− ε1M , (2.5) is changed into

1
2

d

dt
‖u− w‖2

L2(Ω) ≤ C‖u− w‖2
L2(Ω),(2.6)

where C =
(
C1‖∇u‖L2(Ω) + 4M/ε1

)
is bounded by u ∈ L2(0, T ;H1

0 (Ω)).
Since u(0) = w(0) = u0, (2.6) and Gronwall’s inequality yield u(t, x) =

w(t, x) on [0, T ]× Ω, which establishes the uniqueness.

3. Convergent iterative scheme

Discretised difference schemes will be used for the numerical experi-
ments.

Theorem 3.1. Let u0 ∈ H1
0 (Ω). The sequence {un} is defined by

un+1
t + ζ(un) · ∇un+1 −∇ · (ε∇un+1) = 0,(3.1)

un+1|∂Ω = 0,

un+1(0) = u0,

which converges in C([0, T ]; L2(Ω)) to the strong solution of (2.2).

Proof. From (2.3), and assuming un ∈ H1
0 (Ω), the linear problem Eun

has a unique solution un+1. It is clear that un+1 ∈ H1
0 (Ω) by Theorem

2.1 and the classical results of the parabolic equations.
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By using (2.4) in Theorem 2.1,

1
2

d

dt

∥∥u− un+1
∥∥2

L2(Ω)
+ ε‖∇u−∇un+1‖2

L2(Ω)

≤ ‖ζ(u)− ζ(un)‖L∞0 (Ω) ‖∇u‖L2(Ω)‖u− un+1‖L2(Ω)

+‖ζ(un)‖L∞0 (Ω)‖∇u−∇un+1‖L2(Ω)‖u− un+1‖L2(Ω).

By using Schwarz’s inequality, Poincare’s inequality, ε and conditions of
ζ,

1
2

d

dt

∥∥u− un+1
∥∥2

L2(Ω)
≤ ‖∇u‖2

L2(Ω)‖u− un‖2
L2(Ω).

Moreover
‖u− u0‖2

L2(Ω) ≤ C∗ ∀t ∈ [0, T ],

where C∗ is a constant which only depends on ζ, ε and u0. Then,
Gronwall’s inequality yields, for any t ∈ [0, T ],

‖u− u1‖2
L2(Ω) ≤ C∗

(∫ T

0
‖∇u(s)‖2

L2(Ω)ds

)
,

and, by iteration,

‖u− un+1‖2
L2(Ω) ≤

C∗

(n + 1)!

(∫ T

0
‖∇u(s)‖2

L2(Ω)ds

)n+1

.

The sequence {un} converges in C([0, T ]; L2(Ω)) to the strong solution
of (2.2).

4. Numerical experiments

In order to simplify the presentation of the method for the numerical
experiments, the 1D electrostatic case is presented as follows:

ut + v∂xu + F∂yu = 0,

∆xΦ = ρ =
∫

Ωy

udy − 1,

Φ|∂Ωx = 0.

By adding a second-order term and by using a standard finite differen-
tial method (an implicit first-order scheme), the 1D electrostatic case
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changes into

un+1
i,j − un

i,j

4t
+ vn

j

un+1
i+1,j − un+1

i−1,j

24x
+ Fn

i

un+1
i,j+1 − un+1

i,j−1

24y

− ε

(
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

(4x)2
+

un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

(4y)2

)
= 0,

vn
j = yj .

The discrete problem can now be written

un+1 − un

4t
+ Ah(ε, un)un+1 = 0,

where the matrix Ah is positively defined. By classical arguments, I +
4tAh(ε, un) is invertible. More details can be found elsewhere in [4, 10,
23].

It is hard to confirm the superiority of the methods. One verifiable
means for confirmation is Landau damping. Landau damping occurs
when the energy exchanges between a wave with phase velocity V ph and
particles in the plasma with velocity are approximately equal to V ph,
which can interact strongly with the wave. Those particles that have
velocities slightly less than V ph will be accelerated by the wave electric
field in order to move with the wave phase velocity, while those particles
with velocities slightly greater than V ph will be decelerated by the wave
electric field, losing energy to the wave. In a collisionless plasma, the
particle velocities are often taken to be approximately a Maxwellian
distribution function. If the slope of the function is negative, the number
of particles with velocities slightly less than the wave phase velocity
is larger than the number of particles with velocities slightly greater.
Hence, there are more particles that gain energy from the wave than
lose energy to the wave, which leads to wave damping. If, however, the
slope of the function is positive, the number of particles with velocities
slightly less than the wave phase velocity is smaller than the number of
particles that have velocities that are slightly greater. Hence, there are
more particles that lose energy to the wave than gain energy from the
wave, which leads to an increase in the wave energy.

To confirm this method, Finite Difference Method is used, where the
initial data are given by

u0(x, y) =
1√
2π

e−y2/2 (1 + α cos kx) ,
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where k = 0.5, −5 ≤ y ≤ 5, and 0 ≤ x ≤ 4π. The linear Landau
damping theory is valid as long as t < α1/2: For longer times, the
problem is inherently nonlinear. Here, the Landau theory can not be
applied because nonlinear effects are too important, despite the fact that
this test has been studied numerically by many authors. The electric
energy log

∑ |F | first decays linearly and then periodically oscillates.
More details can be found elsewhere in [11, 12, 13, 14, 16, 17, 18, 19, 23,
22].

In this case, α = 0.01, 4t = 0.01, and T = a number of iteration
×4t. A number of cells (Nx = 32 in the x−direction and Ny = 32 in
the y−direction) are used.
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Figure 1.Initial condition α = 0.01

Figure 1 shows the initial function u0 on α = 0.01. In Figure 1, the left
image is a contour image and the right image is a 3-D plot image.
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Figure 2. ε = 0.01, 0.005, 0

Figure 2 shows the electric energy log
∑ |F | for ε (ε = 0.01, 0.005, 0).

More details can be found elsewhere in [7, 11].
In this case, α = 0.5, 4t = 0.01, and T = a number of iteration

×4t. A number of cells (Nx = 32 in the x−direction and Ny = 32 in
the y−direction) are used.
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Figure 3. Initial condition α = 0.5

Figure 3 shows the initial function u0 on α = 0.5. In Figure 3, the left
image is a contour image and the right image is a 3-D plot image.
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Figure 4. T = 1, 10, 20

In Figure 4, the upper images are 3-D plot images and the lower images
are contour images for each time (T = 1, 10, 20) on ε = 0.
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Figure 5. ε = 0.01, 0.001, 0

Figure 5 shows the electric energy log
∑ |F | of results on α = 0.5 for ε

(ε = 0.01, 0.001, 0).

In this case, the initial data

u0(x, y) =
y2

√
2π

e−y2/2 (1 + α cos kx)

are given, where 4t = 0.01 and T = a number of iteration ×4t. A num-
ber of cells (Nx = 32 in the x−direction and Ny = 32 in the y−direction)
are used.
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Figure 6. T= 0, 10, 20, 30

Figure 6 shows the results of condition α = 0.01. In Figure 6, the upper
images are 3-D plot images and the lower images are contour images for
each time (T = 0, 10, 20, 30) on ε = 0.
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Figure 7. T= 0, 3, 4, 6
Figure 7 shows the results of condition α = 0.5. In Figure 7, the upper
images are 3-D plot images and the lower images are contour images for
each time (T = 0, 3, 4, 6) on ε = 0.

Conclusion

In this paper, the nonlinear first-order partial differential equation
containing self consistence condition (the Vlasov-Poisson equation) was
studied with a viscosity term. By using the viscosity term, this equa-
tion changes into a parabolic equation. Therefore, the well-known clas-
sical results of parabolic equations can be used. Our results have the
viscosity effects. However, using small viscosity terms or without the
viscosity term (ε = 0) in numerical experiments, the results of proposed
schemes are similar to the numerical results of the Vlasov-Poisson equa-
tion. Moreover, we analyzed the tokamak structure and obtained the
confidential results of the long-time numerical solution, using the im-
plicit scheme.
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